Preparation de la Solution Solide Hydrurofluoree $CaF_{2-x}H_x(O < x \le 1,24)$ Etude Structurale par Diffraction des Rayons X et par Diffraction des Neutrons

JEAN-FRANÇOIS BRICE*, ALAIN COURTOIS†, ET JACQUES AUBRY*

* Laboratoire de Chimie du Solide, Associé au CNRS No. 158, Service de Chimie Minérale A, Université de Nancy I, C.O. 140, 54037 Nancy, Cedex, France, and † Laboratoire de Minéralogie et Cristallographie, Equipe de Recherche Associée au CNRS No. 162, C.O. 140, 54037 Nancy Cedex, France

Received July 25, 1977; in revised form November 1, 1977

L'étude du système CaH₂-CaF₂ à 700°C permet d'associer les anions F⁻ et H⁻ dans une même combinaison ternaire. La solution solide CaF_{2-x}H_x (0 < x \leq 1.24) est mise en évidence. Elle cristallise dans la symètrie cubique type fluorine. Le paramètre de la solution solide peut être considéré comme constant quand la composition varie puisque a varie de 1/100ème Å quand on passe de CaF₂ pur (a = 5.463 Å) à la phase limite CaF_{0.76}H_{1.24} (a = 5.452 (5) Å). Les deux anions H⁻ et F⁻ ont donc sensiblement la même taille dans la solution solide hydrurofluorée. L'étude par diffraction X et par diffraction des neutrons permet de proposer le modèle structural suivant: substitution statistique des ions fluorure par les ions hydrure sur le site 8c de la maille fluorine.

By studying the CaH₂-CaF₂ system at 700°C, we associate F⁻ and H⁻ anions in the same ternary combination. The existence of solid solutions of composition CaF_{2-x}H_x ($0 < x \le 1.24$) is established, crystallizing in CaF₂-type cubic symmetry. The solid solution parameter is considered constant as the composition varies, since there is a variation of 1/100 Å between pure CaF₂ (a = 5.463 Å) and the limit phase CaF_{0.76}H_{1.24} (a = 5.452(5) Å). Thus the two anions H⁻ and F⁻ are approximately the same size in the mixed hydride fluorides of calcium. X-ray and neutron diffraction studies indicate a structure in which there is a statistical substitution of fluoride ions by hydride ions on the 8c sites of the CaF₂ unit cell.

La substitution de l'ion fluorure F^- par l'ion isoélectronique O^{2-} , de rayon ionique très voisin, a été largement étudiée. Par la suite, plusieurs travaux ont montré la possibilité d'associer F^- à d'autres anions dans le cas de systèmes ternaires mettant en jeu un métal alcalinoterreux ou une terre rare. A l'heure actuelle, les différentes combinaisons connues sont les suivantes:

halogénures mixtes (EuFCl) (1);
fluoronitrures (Ca₂NF, Sr₂NF, Ba₂NF) (2, 3), (La₂NF₃) (4);

• oxyfluorures (LaOF), (EuO_{1-x} F_{1+2x}) (5);

•fluorosulfure (LaSF) (6);

•fluorohydroxyde (La($OH_{1-x}F_x$)₃ (7)

L'association de l'ion hydrure avec les ions N^{3-} et X^- (X = Cl, Br, I) a permis la mise en évidence et l'étude des phases définies suivantes: hydruronitrures M_2NH (M = Ca, Sr, Ba) (8) et hydrurohalogénures CaHX (9).

Il apparaissait normal d'envisager une possible association entre l'ion hydrure et l'ion fluorure puisque F⁻ et H⁻ ont des rayons ioniques comparables ($r_{\rm F-}$ de l'ordre de 1.331.36 Å; r_{H^-} variant de 1.20 à 1.50 Å suivant la nature du cation mis en jeu). La combinaison avec le calcium est choisie en raison de la taille de H⁻ dans CaH₂ (1.34–1.36 Å en coordinence 4 (10)) très proche de celle de F⁻ dans la fluorine CaF₂ (1.37 Å) (11).

A notre connaissance, seul le système LiF-LiH a été étudié, les auteurs ayant mis en évidence une solution solide en toutes proportions, permise par l'isotypie structurale du fluorore et de l'hydrure de lithium (12). Signalons aussi que le dopage de la fluorine par l'hydrogène (H⁻ substitué à F⁻; H⁻ interstitiel dont l'introduction est compensée par la substitution de Ca²⁺ par une terre rare T³⁺) est un phénomène bien connu des physiciens. Les études physiques sont assez nombreuses à ce sujet, mais, à notre connaissance, aucune étude chimique n'a été entreprise sur le système CaH₂-CaF₂.

1. Preparation et étude chimique de la solution solide $CaF_{2-x}H_x$

Le système CaF_2-CaH_2 est étudié à la température de 700°C. Le mélange fluorurehydrure est placé dans un creuset en molybdène introduit à l'intérieur d'une ampoule de quartz scellée sous vide. Le fluorure CaF_2 de qualité "Suprapur" (Merck) est préablement desséché par chauffage sous vide secondaire. L'hydrure CaH_2 est préparé par action à 600°C de l'hydrogène sur le métal bisublimé. L'hydrogène utilisé est exempt de toute trace d'eau et d'oxygène, et provient de la décomposition thermique de l'hydrure de lithium LiH.

L'étude de toute une gamme de compositions différentes est ainsi entreprise en faisant varier dans un large domaine le rapport atomique F/H. Dans tous les cas, la réaction est totale en quelques heures. La composition du mélange, après réaction, est différente de la composition de départ, en raison de la sublimation d'une faible quantité de CaH_2 qui vient attaquer la paroi de silice de l'ampoule (cf. Tableau I).

Les phases obtenues sont étudiées par diffraction X (clichés en montage Seeman-Bohlin et Debye-Scherrer, CuKa) et par analyse chimique.

Pour des rapports atomiques F/H de départ supérieurs à 0.56, les raies caractéristiques de la structure orthorhombique, type PbCl₂, de l'hydrure de calcium n'apparaissent plus sur les diffractogrammes. Les clichés indiquent la présence d'une seule phase de symétrie cubique dont la constante de maille reste pratiquement égale à celle de la fluorine: elle passe de 5.463 Å pour CaF_2 à 5.452 (5) Å pour la phase limite. Sur les diffractogrammes des phases hydrogénées, les raies 200, 222, et 420 sont observées alors qu'elles sont absentes sur un diffractogramme de CaF₂, et leur intensité croît avec la teneur en hydrogène du composé. Pour des rapports F/H inférieurs ou égaux à 0.56, on note à côté de la phase cubique la présence d'un excès d'hydrure CaH₂.

Les dosages du calcium et de l'hydrogène ont permis d'établir la formule globale des différentes phases. Le calcium est dosé par complexométrie, après mise en solution de la poudre par attaque perchlorique à chaud. L'hydrogène est évalué en utilisant une méthode manométrique mise au point au laboratoire: oxydation de la phase hydrogénée à 450°C en présence d'oxyde de cuivre dans un enceinte de volume connu sous

TABLEAU I

No.	F/H avant réaction	F/H après réaction	Composition	ρ mesurėe (g·cm ⁻³)	ρ calculée (g · cm ⁻³)
1	2	2.333	CaF _{1.40} H _{0.60}	2.73 ± 0.05	2.757
2	1	1.128	CaF _{1.06} H _{0.94}	2.48 ± 0.05	2.507
3	0.56	0.613	CaF _{0.76} H _{1.24}	2.24 ± 0.05	2,285

atmosphère inerte d'azote et évaluation de la pression de vapeur d'eau. Les résultats obtenus planin pour trois phases sont consignés dans le Tableau I. La somme F + H reste égale à 2, d'où la formule globale $CaF_{2-x}H_x$ caractéristique de la solution solide fluorohydrogénée de calcium. La limite de cette solution solide l'anal correspond à un rapport F/H = 0.613, d'où la

correspond à un rapport F/H = 0.613, d'où la formule $CaF_{0.76}H_{1.24}$. La solution solide s'étend donc sur un large domaine, x variant de 0 à 1.24. La masse volumique varie en fonction de la composition et les valeurs mesurées sont en bon accord avec celles calculées (Z = 4) (Tableau I).

Les phases hydrurofluorées les plus riches en hydrogène ont un comportement à l'hydrolyse identique à celui de CaH_2 (hydrolyse rapide au contact de la vapeur d'eau atmosphérique et violente au contact de l'eau liquide). Cependant, la dilution des ions hydrures dans la fluorine modère le processus d'hydrolyse. Pour les phases où la teneur en fluorure est supérieure à celle en hydrure, le dégagement d'hydrogène s'effectue alors dans des conditions douces, ceci d'autant plus que la dilution dans CaF_2 est grande.

En raison de l'instabilité de l'hydrure CaH_2 et des phases $CaF_{2-x}H_x$, toutes les manipulations s'effectuent en boîte à gants parfaitement desséchée.

2. Etude structurale des phases $CaF_{2-x}H_x$

La structure des phases hydrurofluorées est établie grâce à l'emploi successif et complémentaire de deux méthodes physiques: diffraction des rayons X et diffraction des neutrons sur la poudre.

2.1. Diffraction des rayons X

L'enregistrement est réalisé sur diffractomètre (CGR, $\theta = 60^{\circ}$ avec goniomètre G 2000 à platine horizontale) monté en transmission, avec la radiation K_{α} du cuivre. La poudre est placée entre deux fenêtres de beryllium qui la protègent de l'humidité. Les intensités des 15 raies distinctes observées sont mesurées par planimétrie.

Les diffractogrammes des phases $CaF_{2-x}H_x$ sont compatibles avec les règles d'extinction systématique du groupe spatial cubique de CaF₂: Fm3m (no. 225 des Tables Internationde Cristallographie). Etant donné l'analogie existant entre les diffractogrammes de CaF, pur et des phases hydrogénées, nous avons placé les ions Ca²⁺ et F⁻ dans les sites qu'ils occupent dans la maille de CaF₂. Les ions F^- , placés dans le site 8c, contribuent à la diffraction pour 9 réflexions (h + k + 1 = 2n)avec un facteur de diffusion $f_{8c} = p_F \cdot f_F (p_F =$ proportion de fluor, $f_{\rm F}$ = facteur de diffusion atomique de F⁻). A l'aide d'un programme d'affinement par méthode de moindres carrés, minimisant la fonction $U = \sum_{hkl} (I_o - I_c)^2$, nous affinons la valeur m du taux d'occupation du site 8c en plaçant dans la maille les atomes de calcium (site 8a) et les atomes de fluor (site 8c). Pour chacune des trois phases, la valeur de m, fixée initialement à 1, prend les valeurs finales m_{cal} indiquées dans le Tableau II. On remarque le bon accord de m_{cal} avec les valeurs $p_{\rm F}$ déduites de l'analyse chimique. On note cependant que, dans les trois cas, les valeurs de m_{cal} sont légèrement supérieures à celles de $p_{\rm F}$. Ceci peut s'expliquer si on envisage comme hypothèse de compléter le remplissage du site 8c avec les ions H⁻. En effet, le facteur de diffusion du site 8c s'écrit alors: $f_{8c} = p_F \cdot f_F + (1 - p_F) f_H$, le facteur m prenant la valeur

$$m' = \frac{p_{\rm F} f_{\rm F} + (1 - p_{\rm F}) f_{\rm H}}{f_{\rm F}} = p_{\rm F} + (1 - p_{\rm F}) \frac{f_{\rm H}}{f_{\rm F}}.$$

Dans l'intervalle d'angles groupant les 9 réflexions (0.18 < Sin θ/λ < 0.58 Å⁻¹), le rapport $f_{\rm H}/f_{\rm F}$ varie de 0.079 à 0.017. Pour

TABLEAU II

No.	Composition	P _F	m _{cal}	<i>m</i> ′
1	CaF _{1.40} H _{0.60}	0.70	0.715(3)	0.724-0.705
2	CaF _{1.06} H _{0.94}	0.53	0.538(7)	0.567-0.538
3	CaF _{0.76} H _{1.24}	0.38	0.405(9)	0.4290.390

chaque composition $p_{\rm F}$, on peut déterminer, à partir de ces valeurs extrêmes du rapport $f_{\rm H}/f_{\rm F}$, l'intervalle auquel doit appartenir m'. Le Tableau II montre que les valeurs affinées m_{cal} se situent bien dans les intervalles ainsi définis.

Ceci montrerait que, malgré le faible pouvoir diffusant des ions H⁻, les résultats de diffraction des rayons X vont dans le sens d'une substitution fluor-hydrogène dans le site 8c. Toutefois, il est raisonnable de considérer que la diffraction X n'apporte de renseignements sûrs qu'en ce qui concerne les ions Ca²⁺ et F-: ces ions occupent respectivement les sites 4a et 8c du groupe spatial Fm3m; le taux d'occupation du site 8c par les ions F⁻ déduit des analyses chimiques concorde avec les résultats de diffraction des rayons X.

Le calcul de facteurs de structure est effectué en tenant compte de ces conclusions (Tableau III).

Le facteur de confiance $R = \sum (I_0 - I_c)/$ $\sum I_{o}$ prend des valeurs comprises entre 0.07 et 0.05 guand on place dans la maille les ions

calcium et fluor. En complétant le remplissage du site 8c avec les atomes d'hydrogène, R ne varie pratiquement pas: les valeurs finales sont consignées dans le Tableau IV (facteur d'agitation thermique général fixé à la valeur $B_G = 0.2 \text{ Å}^2$).

L'examen de ce tableau montre que les valeurs des intensités des réflexions de type h+ k + l = 2n varient d'un échantillon à l'autre dans le sens conforme à l'hypothèse: augmentation de l'intensité des raies du type " f_{Ca} – $2f_{(F,H)}$ " (h + k + l = 4n + 2) et diminution de l'intensité pour les raies du type " $f_{Ca} + 2f_{(F,H)}$ " (h + k + l = 4n) quand la teneur en fluor diminue.

TABLEAU III

Coordonnées fractionnaires

000

 $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$

 $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$

m

0.5

P_F

 $1 - p_{F}$

	· · · · · · · · · · · · · · · · · · ·						
	Contribution à		.40 H 0.60		.06H0.94		76 H 1.24
h k l	$F_{(hkl)}$	$I_{\rm obs}$	$I_{\rm cal}$	$I_{\rm obs}$	$I_{\rm cal}$	$I_{\rm obs}$	$I_{\rm cal}$
111	f_{ca}	1000	1030	1000	1022	1000	984
200	$f_{Ca} - 2f_{(F,H)}$	48	38	120	94	165	159
220	$f_{C_0} + 2f_{(F,H)}$	969	954	787	784	624	630
311	f_{ca}	427	388	407	385	350	370
222	$f_{C_{\rm H}} - 2f_{({\rm F},{\rm H})}$	19	16	50	30	61	44
400	$\int_{C_{\rm e}} + 2f_{\rm (E,H)}$	120	121	108	100	84	82
331	$f_{C_{n}}$	145	141	144	140	146	135
420	$f_{CB} - 2f_{(F,H)}$	28	26	55	42	68	58
422	$f_{Ca} + 2f_{(F, H)}$	226	228	199	191	163	157
511	f_{CB}	115	113	94	112	115	108
440	$f_{c_{R}} + 2f_{(r_{R},H)}$	80	83	59	70	56	58
531	f_{Ca}	130	149	122	148	132	142
600) 442	$f_{\rm CB} - 2 f_{\rm (F,H)}$	33	27	50	39	51	49
620	$f_{C_{R}} + 2f_{(E_{R})}$	145	173	124	147	98	123
533	\int_{Ca}	95	95	79	94	75	91

Atome

Ca

F

Н

Site

4a

8c

8c

2.2 Diffraction des neutrons

Il n'y a pas lieu de s'étonner du fait qu'aux rayons X l'introduction de l'hydrogène, dans le calcul de facteurs de structure, n'améliore pas le facteur R de manière sensible. L'hydrogène n'apporte, en effet, qu'une contribution négligeable au facteur de structure vis-à-vis de celles du calcium et du fluor. La situation doit être toute différente aux neutrons, les longueurs de Fermi étant, pour le calcium, le fluor et l'hydrogène, du même ordre de grandeur, plus précisément:

$$b_{\rm CR} = +0.470 \cdot 10^{-12}, b_{\rm F} = +0.560 \cdot 10^{-12}, b_{\rm H} = -0.374 \cdot 10^{-12} \,{\rm cm}.$$

Les diagrammes des échantillons les plus riches en hydrogène (échantillons 2 et 3) ont été enregistrés sur le diffractomètre H 12 du réacteur EL 3 du C.E.N. de Saclay.¹ L'échantillon pulvérulent est contenu dans un porteéchantillon cylindrique étanche en vanadium; la longuer de Fermi du vanadium est si petite que les raies du diagramme sont uniquement dues à l'échantillon. L'intensité des raies est évaluée par intégration, déduction faite du fond continu. Un calcul d'erreurs sur les mesures des intensités observées est effectué en considérant l'écart type sur le comptage du nombre de coups correspondant à chaque raie,

¹ Nous remercions Monsieur P. Meriel, Ingénieur au C.E.N. de Saclay, pour l'obligeance avec laquelle il a bien voulu réaliser les clichés de diffraction neutronique, pour les conseils qu'il nous a prodigués et pour l'intérêt qu'il a porté envers cette étude.

l'écart type avec lequel le fond continu est extrapolé et le nombre d'enregistrements effectués pour chaque raie (Tableau V). Pour comparer les intensités observées aux intensités calculées, on s'est, au préalable, assuré que le facteur d'absorption A_{hkl} pouvait être considéré comme constant dans la région de spectre explorée. L'hydrogène, qui possède une section efficace de diffusion incohérente élevée, peut en effet donner une contribution importante à l'absorption. Une mesure en transmission effectuée sur l'échantillon no. 3, le plus riche en hydrogène, montre que, pour cet échantillon, le produit du coefficient d'absorption linéaire par le rayon de l'échantillon vaut $\mu R = 0.32 \pm 0.02$, valeur suffisamment petite pour qu'on puisse considérer le facteur d'absorption comme constant pour l'échantillon no. 3 et à fortiori pour l'échantillon no. 2.

Compte tenu de la symétrie du groupe spatial Fm3m, du paramètre de réseau $a \simeq$ 5.46 Å et des conditions matérielles d'enregistrement ($\lambda = 1.140$ Å; angle de diffusion 2 θ limité à 44°), nous n'observons que cinq raies sur chaque diagramme. En reprenant le modèle envisagé par diffraction X, les deux raies 111 et 311 sont uniquement dues à la contribution des ions Ca²⁺. Le rapport I_{obs} (111)/ I_{obs} (311) reste d'ailleurs constant quand la composition varie (1.25 pour la phase 2; 1.27 pour la phase 3). Les trois autres raies (200, 220, et 222) pour lesquelles on observe des variations d'intensité importantes, comportent, en outre, la contribution des ions F⁻ et

h k l	F _c	CaF _{1.06} H _{0.94}			CaF _{0.76} H _{1.24}		
		I _{obs}	I [*] _{cal} ^a	I _{cal}	I _{obs}	I [*] _{cal}	I _{cal}
111	b _{Ca}	731 ± 13	523	753	1000 ± 30	820	978
200	$b_{C_0} - 2b_{(E_1H)}$	118 ± 8	20	100	645 ± 32	4	642
220	$b_{Ca} + 2b_{(F,H)}$	1000 ± 14	1500	968	500 ± 33	1667	462
311	b _C	586 ± 12	425	612	785 ± 36	667	795
222	$b_{C_{R}} - 2b_{(F_{C_{R}})}$	42 <u>+</u> 9	9	44	230 ± 32	2	284
			R = 0.40	R = 0.04		R = 0.74	R = 0.04

TABLEAU V

 $a I_{calc}^{*}$: intensités calculées en plaçant uniquement dans le modèle les ions Ca²⁺ et F⁻; I_{cal} : intensités calculées en complétant le remplissage du site 8c avec les ions H⁻.

H⁻ (Tableau V). Ces cinq raies fournissent donc l'éventail complet des longueurs de Fermi dans l'expression du facteur de structure. De plus, les coordonnées atomiques sont fixées et la composition des phases connue. Il paraît donc raisonnable de vérifier, à l'aide d'un calcul de facteur de structure, que le modèle simple proposé donne un bon accord avec l'expérience. On attribue au facteur d'agitation thermique général et isotrope B_G la valeur B_G = 0.4 Å², valeur comparable à celle introduite dans l'affinement de la structure de CaF, par diffraction des neutrons (13). Un premier calcul, effectué en plaçant uniquement les atomes de calcium et de fluor, selon le modèle établi précédemment, donne à R les valeurs 0.40 pour la phase 2 et 0.74 pour la phase 3. En complétant le remplissage du site 8c avec les atomes d'hydrogène, R s'abaisse à 0.04 dans les deux cas. Le Tableau V montre le bon accord entre les valeurs calculées et observées des intensités lorsque les ions H- sont substitués statistiquement aux ions F⁻ de CaF₂ (Tableau V).

Malgré le peu de données, ces calculs vérifient la validité du modèle proposé. Cependant, il serait intéressant de reprendre les mesures de diffraction neutronique sur un instrument capable de donner des spectres plus fournis, afin d'avoir une confifmation supplémentaire du modèle.

Conclusion

La solution solide $CaF_{2-x}H_x$ s'étend sur un large domaine: on peut substituer statistiquement jusqu'à 62% des ions F⁻ par des ions H⁻. Il est donc possible de stabiliser dans la symétrie cubique, type CaF_2 , une phase mettant en jeu Ca^{2+} et H⁻ en présence de F⁻, bien que CaH_2 cristallise dans une structure orthorhombique plus compacte, type PbCl₂. Ce résultat est à rapprocher de ceux de Peterson qui présumait la stabilisation à haute température d'une variété cubique faces centrées pour l'hydrure CaH_2 (14). La valeur pratiquement constante du paramètre de la solution solide indique que, dans une telle combinaison hydrurofluorée, les ions F^- et $H^$ ont sensiblement la même taille. Ce résultat justifie la répartition statistique des anions et l'impossibilité d'obtenir une phase définie ordonnée type CaHCl.

L'étude par spectrométrie infra-rouge est en cours. La mobilité des ions H^- dans le réseau est actuellement envisagée par résonance magnétique nucléaire du proton et par des mesures électriques.

Les premiers résultats en résonance magnétique nucléaire du proton traduisent un processus diffusionnel de l'ion hydrure à température ambiante. L'ion H-, de taille identique à l'ion F⁻, mais de masse plus petite, doit avoir dans le réseau une mobilité plus grande que celle de l'ion F⁻. On peut donc espérer pour les phases $CaF_{2-x}H_x$, de structure fluorine, une conductivité anionique plus élevée que celle de CaF2, et ceci à température relativement plus basse; le point de fusion des phases $CaF_{2-x}H_x$ est d'ailleurs plus bas que celui de CaF₂ pur $(p_F \text{ CaF}_2 \simeq 1360^\circ\text{C}; p_F$ $CaF_{0.76}H_{1.24} \simeq 1100$ °C). De plus, ces phases hydrurofluorées sont comme les fluorures d'excellents isolants électroniques ($\sigma = 3.10^{-6}$ mho \cdot cm⁻¹ à 70°C pour CaF_{1.06}H_{0.94}). Le fait d'avoir une conductivité ionique importante et des propriétés d'isolants électroniques devrait permettre d'envisager l'utilisation des composés $CaF_{2-x}H_x$ en tant qu'électrolyte solide dans des batteries électrochimiques. Des essais pour déterminer avec précision la résistance ohmique et l'énergie d'activation de ces matériaux sont en cours.

Une généralisation des résultats enregistrés avec le calcium peut être envisagée avec les métaux suivants: strontium, baryum et europium, puisque leurs fluorures et hydrures binaires sont isotypes. Les premières expériences, dans le cas du strontium, ont permis la mise en évidence d'une solution solide hydrurofluorée de même type qu'avec le calcium. La solubilité de l'hydrogène dans SrF_2 est cependant moins importante que dans le cas du calcium: la limite de solubilité se situe aux alentours de 50%. De plus, l'introduction des ions H⁻ dans le réseau du fluorure entraîne une variation plus sensible du paramètre de la maille cubique que dans le cas du calcium: a augmente de 5.799 Å (SrF₂ pur) à 5.838(5) Å (phase limite la plus riche en hydrogène). Des essais préliminaires avec le baryum semblent montrer une solubilité encore plus faible de H⁻ dans BaF₂ (de l'ordre de 25%). L'étude complète des systèmes M-F-H (M = Sr, Ba) est en cours.

Bibliographie

- B. TANGUY, M. PEZAT, C. FONTENIT, ET C. FOUASSIER, C.R. Acad. Sci. Paris, 277, 25 (1973).
- 2. P. EHRLICH, W. LINZ, ET J. SEIFERT, Naturwissenschaften 4, 219 (1971).
- 3. J. GALY, M. JACCOU, ET S. ANDERSSON, C.R. Acad. Sci. Paris, 272, 1657 (1971).

- 4. B. TANGUY, M. PEZAT, J. PORTIER, ET P. HAGENMULLER, *Mater. Res. Bull.* 6, 57 (1971).
- 5. W. H. ZACHARIASEN, Acta Cristallogr. 4, 231 (1951).
- 6. C. DRAGON ET F. THEVET, C.R. Acad. Sci. Paris 268, 1867 (1969).
- 7. A. MARBEUF, G. DEMAZEAU, S. TURELL, P. HAGENMULLER, J. DEROUET, ET P. CARO, J. Solid State Chem. 3, 637 (1971).
- J. F. BRICE, J. P. MOTTE, ET J. AUBRY, C.R. Acad. Sci. Paris 274, 2166 (1972); 276, 1093 (1973). J. F. BRICE, J. P. MOTTE, A. COURTOIS, J. PROTAS, ET J. AUBRY, J. Solid State Chem. 17, 135 (1976).
- P. EHRLICH, B. ALT, ET L. GENTSCH, Z. Anorg. Allg. Chem. 283, 58 (1956). P. EHRLICH ET H. GORTZ, Z. Anorg. Allg. Chem. 288, 148 (1956). P. EHRLICH ET H. KULKE, Z. Anorg. Allg. Chem. 288, 156 (1956).
- 10. C. E. MESSER, J. Solid State Chem. 2, 144 (1970).
- 11. R. D. Allen, Amer. Mineral. 37, 910 (1952).
- 12. C. E. MESSER ET J. MELLOR, J. Phys. Chem. 64, 503 (1960).
- 13. B. T. M. WILLIS, Acta Cristallogr. 18, 75 (1965).
- 14. D. T. PETERSON ET V. G. FATTORE, J. Phys. Chem. 70, 468 (1966).